IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

IEEE Systems, Man and Cybernetics Society Section

Received 22 May 2025, accepted 7 June 2025, date of publication 12 June 2025, date of current version 24 June 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3579043

== RESEARCH ARTICLE

Sense of Agency in Closed-Loop
Muscle Stimulation

LUKAS GEHRKE™, LEONIE TERFURTH -, AND KLAUS GRAMANN

Department of Biological Psychology and Neuroergonomics, Technical University Berlin (TU Berlin), 10623 Berlin, Germany
Corresponding author: Lukas Gehrke (lukas.gehrke @tu-berlin.de)
This work was conducted within the project Brain Dynamics in Cyber-Physical Systems as a Measure of User Presence, funded by the

Deutsche Forschungsgemeinschaft (DFG) under project number GR 2627/13-1. We acknowledge support by the Open Access Publication
Fund of TU Berlin.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the ethics committee of the Department of Psychology and Ergonomics (IPA) at the Technical University of Berlin under
Application No. BPN_GEH_2_230130.

ABSTRACT To maintain a user’s sense of agency (SoA) when using motor augmentation devices,
system actuation must align with the user’s intention. While stimulus-response paradigms in lab settings
allow precise timing, real-world use requires detecting user volition directly. We developed a closed-loop
system using a brain-computer interface (BCI) to detect readiness potentials (RPs) from EEG and trigger
electrical muscle stimulation (EMS) at moments of volitional intent. The system distinguishes in real-time
between idle and pre-movement states, allowing EMS to support finger movements aligned with the user’s
intention. We evaluated the system in a within-subject user study comparing three conditions: INTENTION
(voluntary action), INVOLUNTARY (EMS-triggered without intent), and AUGMENTED (BCI-controlled
EMS). We measured classifier performance (mean F1 score = 0.7), intentional binding, subjective control
ratings, and collected qualitative interview data. Results showed that AUGMENTED preserved more agency
than INVOLUNTARY, though less than INTENTION. Participants described moments of synchronized
stimulation as collaborative, while misalignments reduced perceived control. These findings highlight the
promise of BCI-controlled EMS for agency-preserving augmentation and identify design challenges for real-
world systems.

INDEX TERMS Augmentation, brain—computer interface, EEG, muscle stimulation, sense of agency.

I. INTRODUCTION

Advances in hardware that augment a user’s physical actions
have reignited dreams of overcoming human limitations,
recovering lost abilities and simplifying skill acquisition [1],
[2]. These technological advances include the miniaturization
of the actuating hardware to wearable form factors and
the direct sensing and stimulation capabilities of neural
interfaces. Especially due to these characteristics, recent
perspectives promote a change of the computing era from
human-computer interaction to integration [3]. One key
change in perspective is, that integrated users share agency
with the computing machinery to execute tasks. This is a
critical distinction as integration technologies are designed
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to directly influence people’s bodies, their actions, and the
resulting action outcomes [4].

Besides body and outcome augmentation, action augmen-
tation has been defined as the case where a “system assists
the user’s action to produce the intended outcome’” [4]. Such
action augmentations can be realized purely on a software
integration level, for example by an Al pair programmer.
When it is designed to happen on a hardware level, further
challenges emerge, specifically due to shared agency, which
in this case means handing over control of one’s own
body. Unfortunately, such augmented users often report
dissociative experiences, frequently disrupting their sense of
agency (SoA) [5], [6].

Having an SoA means experiencing control over our
own voluntary actions, instead of them feeling as randomly
happening to us, for a recent review see [7]. It has been shown
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classifier

—> "pre-movement!"

FIGURE 1. We propose an augmentation system that aligns with the
user’s agency. When participants feel the spontaneous urge to move,
readiness potentials (RPs) are picked up in the user’s brain signals.

A brain-computer interface (BCl) then predicts the user to be in either an
idle (red) or pre-movement (green) state. In the latter case, electrical
muscle stimulation (EMS) is triggered and moves the user’s hand. Image
taken with consent from participant.

that users are more likely to feel engaged and satisfied with
an interaction, and are more likely to trust a system the more
they experience SoA [8], [9]. Hence, a key challenge to drive
the adoption of human action augmentation is to design for
agency experience, so users feel as though they are in the
“driver’s seat” once again.

With this paper, we strive towards an ‘agency-aligned’
augmentation system. We developed a brain-computer inter-
face (BCI) that establishes a fast communication channel
between a user’s brain signals and a physical end effector,
see figure 1. The closed-loop augmentation system (from
hereon referred to simply as system) controls the user’s
muscles at the time of their intent to interact, as measured
through readiness potentials (RP) manifesting in the user’s
electroencephalogram (EEG) [10], [11], [12]. Ultimately,
such an augmentation can cue the user’s movements, increase
their strength, and might also preempt their action, i.e.,
increase their speed.

In our system, an RP-based classifier distinguished
between two user states: idle, reflecting the absence of an
intent to act, and pre-movement, indicating the presence of an
intent to act. During idle, participants were passively looking
at a fixation cross. Instead, during pre-movement, participants
were instructed to voluntarily initiate a tap on a touchscreen
whenever they felt the urge to do so. Previous work has
indicated that the RP emerges during formation of conscious
intention and is specific to voluntary action [13], [14], [15].
Upon predicting a pre-movement state, the system augments
the user’s action, potentially even preceding their voluntary
motor command. This augmentation moves the ring finger in
accordance with the user’s intention to act. We achieved the
movement by leveraging electrical muscle stimulation (EMS)
applied to the user’s forearm flexor muscle.
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To evaluate whether our augmentation system preserves
SoA, we conducted a within-subject user study compar-
ing three experimental conditions: INTENTION (voluntary
action), INVOLUNTARY (EMS-triggered without move-
ment intent), and AUGMENTED (BCI-controlled EMS).
We measured agency through intentional binding, subjective
ratings, and qualitative interviews, and additionally analyzed
EEG (post-hoc) to identify prediction error responses to the
stimulation.

The remainder of this paper is structured as follows:
Section II reviews related work on sense of agency and
EEG-based augmentation. Section III describes our system
and experimental methods, including the BCI design and
classifier. Section IV presents the results across behavioral,
subjective, and neural data. Section V discusses the impli-
cations for agency-preserving augmentation systems, and
Section VI concludes with limitations and future directions.

Il. RELATED WORK

Our research draws inspiration from neuroscience and from
engineering work on BCIs as well as on physical user
augmentation. In order to situate our findings, we briefly
review the literature on SoA specifically focusing on what it
means to act at one’s own volition, being a passive observer,
and when acting integrated with a technology.

A. THEORIES ON SENSE OF AGENCY

The most widely used theory on how the SoA arises is
the comparator model [16], [17], [18]: When we act at
our own volition and intentionally perform an action, the
brain generates sensory predictions about the action outcome.
These predictions are constantly compared to the actual
sensory data available during the execution of the action.
These include continuous signals such as proprioceptive
and visual monitoring of the ongoing movement as well
as higher level predictions about the semantic outcome of
the action [19], [20], [21]. If no sensorimotor incongruency
arises, and further, the brain attributes subjective causality
over the action outcome, SOA manifests.

In the simple case of pressing a key on a piano, the
finger movement is constantly compared to the predicted
proprioceptive feedback. Subsequently, the tone generated
by the key press is evaluated against auditory predictions.
On a semantic level, these predictions may be in reference to
whether the tone loudness corresponds to the velocity of the
key press or whether the tone is in-key or out-of-key, and in
general aligns with the subjective goal of the keypress [22].
If these predictions — based on the intended movement and
its expected outcome — explain the sensory data available,
agency is experienced.

In human-computer interaction (HCI), these constructs are
often categorized in slightly different terms. Pre-reflective
is used to describe ‘early’, implicit, experience of agency,
such as when matching proprioceptive predictions about
finger movements. At higher levels of the cognitive hierarchy,
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reflective, i.e. conscious, experience refers to matching
semantic predictions about action outcomes [4], [23].

In order to measure SoA, both explicit and implicit
methods have been developed. Explicit methods directly
query participants to report their subjective experiences using
questionnaires. Items such as “It felt like I was in control of
the hand I was looking at” [24] or “Indicate how much it felt
like moving the joystick caused the object on the computer
screen to move” [25], query either the pre-reflective action —
or the reflective outcome evaluation [26]. In most cases such
questionnaires aim at a higher-level, reflective, judgment of
agency.

On the other hand, implicit methods are often used to
query low-level pre-reflective sensory predictions that are
not consciously perceived [27], [28], [29]. Seminal work in
neuroscience has described one effect of SOA as a bias in the
perception of action outcome: Intentional binding paradigms
state that when a button press is followed by a — delayed
— outcome, e.g., a sound, participants mentally compress
the delay [24]. In the theories original formulation, this
temporal compression was assumed to only occur following
movements that were intended: The action outcome is
mentally bound to the intention. To reduce uncertainty about
the binding, the brain ‘explains away’ the excess delta,
compressing the action-outcome delay.

More recently, it has been shown that this ‘temporal
binding’ also manifests when participants are merely a
bystander witness in action-outcome scenarios [30], [31].
Among others, Suzuki et al. [30] showed that temporal
binding manifests as an effect of multisensory causal binding
unrelated to intention or agency, e.g., binding effects were
shown in scenarios where one is witnessing a replay of one’s
own earlier actions. Hence, it remains interesting to see how
such binding manifests in integrated user’s.

As opposed to acting at one’s own volition using one’s
own body, movement augmentation hardware allows moving
a user’s body without their intention. Today, there are three
main technologies to physically augment users’ actions:
Through the use of mechanical actuators, i.e., exoskeletons,
a user’s body can be moved by applying forces to the
extremities [32]. Another possibility is to stimulate the brain
directly [24], so the stimulation causes a motor response, for
example by using transcranial magnetic stimulation (TMS).
Lastly, EMS makes the user’s extremities move by sending
current into their muscle-activating nerves. Irrespective of the
method applied, these technologies allow to move a user’s
body without the user having generated any predictions about
the movement and its outcome. However, proprioceptive,
visual, and other signals indicate that one’s own body is
moving. Hence, re-afference signals are present without
an efference command and copy. Thus, concerning the
comparator model, a prediction error will arise, negatively
impacting SoA [33].

Specifically with respect to emerging research on motor
augmentation, it is important to differentiate between narrow
and broad SoA. Narrow SoA refers specifically to the
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subjective experience associated with bodily movements
themselves, whereas broad SoA pertains to the experience
of controlling external events and outcomes through one’s
movements [34], [35]. Most existing agency research has
primarily addressed broad SoA, exploring control over
environmental outcomes rather than the direct sensorimotor
experience of movements (narrow SoA). Narrow SoA
depends on accurate interoception, that is, how accurately
the brain anticipates interoceptive signals to minimize
prediction errors. Recently it has been argued, that greater
interoceptive acuity—heightened sensitivity to internal bodily
sensations—may diminish the narrow SoA, as the interocep-
tive system becomes particularly sensitive to discrepancies
between predicted and actual bodily states [36], [37]. This
suggests that individuals with higher interoceptive acuity
might perceive augmented movements as less self-generated
due to increased sensitivity to the discrepancy introduced by
externally triggered actions and vice versa.

B. CONTROLLING ACTUATED HAPTIC EXPERIENCES
Experimental setups to investigate new ‘on-body’ aug-
mentation technologies that aim to preserve the user’s
SoA frequently use highly controlled ‘stimulus-response’
paradigms. For example, scenarios where participants are
instructed to tap on a touchscreen in response to a presented
stimulus on the screen. Here, participants’ behavior can be
predicted with very high certainty to follow the presented
stimulus, and estimating their reaction time is very accurate.
In such controlled scenarios, the timing of an action
augmentation device can be tuned to be near optimal.
Hence, pre-empting the user’s motion can be designed to
fall in line with their intention to move, thereby maintaining
SoA. Previously, [38] used a reaction time task in which
participants had to tap a target on screen as soon as it appeared
and subsequently rate their SoA. They showed that in such
a scenario, user’s actions can be pre-empted and that a pre-
emption of about 80 ms best preserves agency [38], [39].
While these works used questionnaires to assess agency,
a recent follow-up work leveraged an implicit measure of
agency [40]. Here, the authors systematically varied the
timing of muscle stimulation and used the Libet clock
method [41] to measure intentional binding. Their findings
revealed a specific stimulation timing (< 50 ms) window
that significantly shortened reaction time while maintaining
strong binding effects—suggesting preserved pre-reflective
SoA.

This findings fall in line with evidence from cognitive
neuroscience that from around 200 ms before a voluntary
movement, users are unable to “veto’ their self-initiated
movement [11]. After this ““point of no return’ user’s struggle
to assign a source other than themselves to the action
initiation. Here, the key aspect for SOA in action augmentation
becomes apparent: External influences on the user’s body
need to be in line with the user’s intention to act. Crucially
then, a key challenge remaining is to design systems that
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maintain agency when user’s actions are unpredictable and
where the experimenter does not have executive control over
the environment. In other words, how can a closed-loop
system to deliver a natural agency experience for users’
augmented actions be designed?

1) USING BRAIN SIGNALS REFLECTING THE INTENT TO
(INTER-)ACT FOR ACTION AUGMENTATION

One possible design solution is to leverage physiological
signals for action augmentation. Of the possible physiological
signals that can be leveraged, the EEG is very well suited
because of its high temporal resolution and the non-invasive
recording close to the motor command generating structures
in the human brain.

The RP, or lateralized readiness potential, is an ampli-
tude fluctuation in the ongoing EEG activity that has
frequently been observed preceding voluntary action [42],
[43]. The RP is reliably observed at electrodes placed
over the sensorimotor cortex contralateral to the acting
hand. In the extended 10-20 system for EEG electrode
placement [44], these are electrodes C3 located over the
sensorimotor cortex of the left hemisphere, and C4 vice versa.
However, activity observed at electrode Cz is reported most
frequently as it reflects neural activity originating from the
sensorimotor cortex without lateralization bias. Since the
RPs’ measurable onset precedes the time of participants’ self-
reported conscious movement intention, it has drawn much
interest with respect to the debate on free will, see [10]
for a recent neuroscientific perspective. However, evidence
abounds for its role in action preparation. An RP is typically
comprised of two stages: an early slow stage that begins up
to two seconds before the actual movement and a late steep
stage that starts about 400 milliseconds before movement.
The first stage manifests in the pre-supplementary motor
area and transfers to the premotor cortex shortly after. The
second stage manifests contra-laterally in the primary motor
cortex [45].

A recent study has shown that the RP is ingrained in the
subconscious mechanisms preceding movements that people
cannot explicitly suppress [12]. In their study, [12] asked
participants to find a way to perform voluntary movements
while keeping accompanying RP amplitudes as small as
possible. After each trial they informed participants about the
strength of the RP in the current trial, so participants had
a feedback metric to optimize for. They found participants
unable to suppress their RP. This inability to suppress the RP
renders it a reliable feature for classification. For example,
the RP can be detected in real-time using a brain-computer
interface (BCI). Reference [11] demonstrated a prototype that
detects RPs in participants ongoing EEG data and adapts
an interface accordingly. In their study, participants were
instructed to veto their self-initiated movement whenever a
red dot occurred on the screen. The red dot’s appearance was
controlled by the BCI. Whenever an RP was detected, the red
dot appeared. The authors found that participants were able
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to veto their self-initiated movement if the red dot appeared
no later than 200ms preceding their movement onset. After
that, participants were unable to ‘“‘overwrite” their motor
command and acted regardless of the red dot’s appearance
on screen.

While our system focused on classifying the RP, recent
work has explored EEG-based predictors of agency beyond
the temporal domain. For instance, [46] showed that both
early and late cortical responses to EMS-evoked movement,
including features in the time—frequency and fractal domains,
correlate with subjective agency ratings on a trial-by-trial
basis. These findings point toward broader EEG signatures
of agency that may inform adaptive stimulation protocols.
Similarly, [47] demonstrated that pre-movement sensorimo-
tor oscillations in the theta and alpha bands shape agency
judgments by modulating cortical connectivity between
frontal and parietal areas. Their results highlight that not
only the presence of motor preparation signals but also their
temporal coordination across brain regions contributes to
later SoA experience.

Taken together, these studies underscore that agency-
relevant information is present in EEG signals. While we
relied on the RP as a robust and well-characterised feature
for real-time classification of voluntary movement initiation,
future neuroadaptive systems may benefit from incorporating
time—frequency, connectivity, and complexity-based EEG
features to better align actuation with user intent.

IIl. USER STUDY & METHODS

In this paper, we present a prototype that uses the user’s brain
signals as the control signal to a physical end effector. With a
user study, we wanted to find out whether the experience of
agency can be preserved during physical action augmentation
when using our prototype.

We compared three conditions of agency experience. With
the first two conditions, INTENTION and INVOLUNTARY,
we queried users at the two edges of agency experience.
In INVOLUNTARY, participants had no intention to move
and no control over their movement, much like in a
bystander scenario. On the other hand, in INTENTION,
participants were acting as they would in their day-to-day
lives, fully in control and with volition. In a third condition,
AUGMENTED, we investigated whether using our prototype
preserved agency. To answer our question, we employed
a mix of qualitative and quantitative methods, including a
psychometric test of intentional binding, one standardized
question, a qualitative (phenomenological) exit interview, and
an exploratory EEG analyses of prediction errors following
muscle stimulation.

To assist readers in replicating our prototype and exper-
iment, we provide the necessary technical details, the
complete source code for the BCI and the experiment, the
collected data, as well as all the analysis scripts.!

1 https://github.com/lukasgehrke/2021-fastReachs
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A. PARTICIPANTS

Eleven participants (M = 29.9 years, SD = 4) were recruited
from our local institution and through the institute’s online
participant pool. Participants were compensated with course
credit or 12 Euro per hour of study participation. Prior to
their participation, they were informed of the nature of the
experiment, recording, and anonymization procedures and
signed a consent form. The experiment was approved by the
local ethics committee of the Department of Psychology and
Ergonomics at the TU Berlin (Ethics protocol approval code:
BPN_GEH_2_230130). One participant had to be excluded
from further data analyses due to significant deviations from
the instructions in the execution of the task. Precisely, they did
not initiate their movements at their own volition but rather
immediately at the onset of each trial, thereby violating the
task instruction of waiting 2-3 s after trial onset, see task
description below for more detail.

B. APPARATUS

The experimental setup, depicted in Figure 2, com-
prised: (1) a 1-channel Electromyography (EMG) device,
(2) a 64-channel EEG system, (3) a medically-compliant
EMS device connected to two electrodes worn on the forearm,
and (4) a tablet to run the experiment and collect behavioral
responses.

EEG

brain signals

EMS
muscle stimulation

Touchpad &
Keyboard

time estimation task

movement onsets

FIGURE 2. Experimental setup of measurement- and input devices
(image with consent from participant).

1) EMG RECORDING

EMG data was recorded from 1 bipolar channel using the
BrainAmp ExG amplifier (BrainProducts GmbH, Gilching,
Germany). The two electrodes were placed above the flexor
digitorum profundus with a reference electrode located on
the wrist bone. EMG data was collected in synchrony with
the EEG data through BrainProducts’ BrainVision Recorder.
EMG data was only recorded for the first experimental
condition to obtain labels for classifier training. After that,
the EMG electrodes were changed for EMS electrodes.

VOLUME 13, 2025

2) EEG RECORDING

EEG data was recorded from 64 actively amplified Ag/AgCl
electrodes referenced to electrode FCz in an actiCap Snap
cap using BrainAmp DC amplifiers from BrainProducts
(BrainProducts GmbH, Gilching, Germany). Electrodes were
placed according to the 10-system [48]. One electrode was
placed under the right eye to provide additional information
about eye movements (VEOG). After fitting the cap, all
electrodes were filled with conductive gel to ensure proper
conductivity, and electrode impedance was brought below
10k2 where possible. EEG (and EMG) data were recorded
with a sampling rate of 250 Hz.

We used LSL? to make the data streams available in the
network and synchronize the recordings of EEG/EMG data
and an experiment marker stream that marked sections of the
study procedure.

3) ELECTRICAL MUSCLE STIMULATION

We actuated the ring finger via EMS, which was delivered
with two electrodes attached to the participants’ flexor
digitorum profundus muscle. We utilized the flexor digitorum
profundus since we found that we can robustly actuate it
without inducing unintended motion of neighboring fingers.
This finger actuation was achieved via a medically compliant
battery-powered muscle stimulator (TENS/EMS Super Duo
Plus, prorelax, Diiren, Germany). The EMS system’s output
was controlled by flipping a solid state relay (silent)
connected via an Arduino Uno (Arduino, Monza, Italy) to the
experiment computer.

The EMS intensity was individually calibrated in a short
pre-test. Starting at the device’s minimum setting (level 1 on
a 1-25 scale), participants pressed a keyboard key with the
non-stimulated hand; this closed the EMS switch for 0.5 s at
the currently selected level. After each pulse the experimenter
verified whether the stimulation produced an immediate,
single tap that the capacitive touchscreen reliably registered.
The participant then increased the intensity one step at a time
until the tap was both comfortable and robustly detected on
consecutive trials. No participant required a level higher than
7. The chosen level was recorded and held constant for all
subsequent experimental blocks.

To ensure a comfortable experimental experience so that
participants relaxed their arm musculature as much as
possible, a custom built hand rest (support device) was placed
on top of the touchscreen for participants, see figure 2.

4) EXPERIMENT PRESENTATION AND COLLECTION OF
BEHAVIORAL RESPONSES

An Acer Group (Acer Inc, Taipeh, Taiwan) tablet was used
to present the task to participants and record their behavioral
responses. In addition to the tablet, we used a keyboard to
allow users to input their timing judgments.

2https ://github.com/sccn/labstreaminglayer
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C. EXPERIMENTAL TASK, DESIGN AND PROCEDURE
Participants performed 75 trials of a simple tapping task in
each of the three conditions.

fixation cross

disappears I interval estimation

tap or%
|

[200, 350, 500] ms

idle waiting

FIGURE 3. Interaction flow depicting one trial in our touchscreen tapping
task.

1) INTENTION

The task was as follows: (1) a fixation cross appeared on a
tablet screen and participants were instructed to rest and wait
until it disappeared; (2) they were instructed to wait for a
brief moment (2 to 3s), before (3) initiating their movement
and tap the screen, see figure 3. In line with the literature on
the origin of the RP generating process, they were told ‘“‘to
avoid pre-planning the movement, avoid any obvious rhythm
across trials, and to press when they felt the spontaneous
urge to move”’ [12]. (4) After the screen was tapped, a tone
was played at a pseudo-random delay of 200, 350, or S00ms.
Participants were now asked to estimate the delay, typing
in their answers on a number pad of an attached keyboard.
No default number was shown, and the entry field reset on
every trial. After confirming their answer by hitting the return
key, the next trial started.

During INTENTION, participants were equipped with
EMG sensors instead of EMS electrodes. Participants’ reac-
tion times in INTENTION were used to select stereotypical
reaction times for the INVOLUNTARY condition. At the end
of INTENTION, EMG electrodes were exchanged for EMS
electrodes at the identical location on the forearm.

2) INVOLUNTARY

The task structure was identical to INTENTION, however,
participants were now instructed to hold and wait for the
muscle stimulation to move their finger thereby eliciting the
screen tap. The timing for the EMS trigger was taken by
randomly choosing a time between the Sth and 95th percentile
of their actual individual reaction time in the INTENTION
condition.

3) AUGMENTED

The task and instruction were identical to INTENTION
with one additional instruction: “you will now work with
the system”. During AUGMENTED, the muscle stimulation
hardware was controlled by the BCI. The classifier was set to
active after the fixation cross disappeared and until a screen
tap was registered. Hence, the muscle was not stimulated
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at other times during a trial, so as not to interfere with
participants typing in their time estimation response.

The order of the conditions was not pseudo-randomized
since training data obtained in INTENTION was required
for both INVOLUNTARY and AUGMENTED. Furthermore,
AUGMENTED was always the last condition, allowing for
a prolonged interview immediately after the experience with
the prototype.

D. BRAIN-COMPUTER INTERFACE
The data obtained in the 75 INTENTION trials was used to
train the participant-specific BCI. For processing EEG and
EMG data from these trials, we utilized the EEGLAB [49]
toolbox with wrapper functions from BeMoBIL-pipeline [50]
running in the MATLAB (The MathWorks Inc. Natick, MA,
USA) environment. First, to generate behavioral labels at
a high temporal resolution for the EEG-based classifier
training, we leveraged EMG data from the flexor digito-
rum profundus. EMG amplitudes were band-pass filtered
from 20 to 100 Hz using a zero-phase finite impulse
response (FIR) filter with automatic filter order selection
(implemented via EEGLAB’s pop_eegfiltnew function) and
subsequently squared. Next, to label the time of movement
onset, the EMG data was averaged across trials for the
second preceding the screen tap. From this averaged data,
the first sample where the EMG amplitude exceeded the 95th
percentile was selected as the time of movement onset, see 4a.
Two event classes were then defined as follows: pre-
movement from -1000 to 0 ms preceding the (EMG detected)
movement onsets and idle, a one-second data segment
between trials where participants were looking at a fixation
Cross.

1) PREPROCESSING EEG
The EEG data was band pass filtered from 0.1 to 15 Hz using a
zero-phase finite impulse response (FIR) filter with automatic
filter order selection (EEGLAB’s ‘pop_eegfiltnew’ function).
The filter design ensured that no phase distortion was
introduced. The chosen high-pass cutoff at 0.1 Hz effectively
removes slow drifts and DC offsets while preserving slow
cortical potentials like the RP. The low-pass cutoff at 15 Hz
was chosen to preserve slow cortical activity relevant for
RP detection while attenuating high-frequency noise from
muscle artifacts and device-related interference, e.g. from
the VR Headset operating at around 90 Hz. A low-pass cut-
off in this range enhances the signal-to-noise ratio of ERP
signals and supports stable comparisons across experimental
conditions [51], [52]. Although we used ICA to remove
structured artifacts such as eye movements, filtering remains
a fundamental preprocessing step. Our filter choice was in
line with prior work using similar pipelines for RP detection
and ERP analysis in EEG-based human-machine interaction
contexts [53], [54], [55], [56].

In the first step to prepare the EEG data for classifier
training, noisy data epochs were rejected. To this end,
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FIGURE 4. Diagram summarizing: (a) signal processing and event labeling from muscle activity, (b) extraction of linear slope features from labeled brain
signals, and (c) real-time application of the BCI gating the muscle stimulation hardware.

the EEGLAB function ‘autorej’ was used, keeping default Ledoit-Wolf lemma [57]) was trained for each participant

parameters. The function iteratively detects and rejects data individually. As single-trial features, the (linear) slope coef-
epochs with extremely large fluctuations or values exceeding ficient was obtained for both idle and pre-movement epochs
a standard deviation threshold, adjusting this threshold remaining after trial. To extract the slope, a linear (least-
iteratively to limit rejections to no more than 5% of epochs squares) regression was fit using ‘linregress’ from the SciPy
per iteration. A full trial was excluded if either an epoch from package [58]. The classifier was then trained using the slope
the idle or pre-movement class was rejected. coefficient of the selection of top-ranked channels from the

precomputed discriminability order as features, generating a
2) SELECTING DISCRIMINATIVE CHANNELS FOR RP feature vector in the dimension of idle/pre-movement epochs
DETECTION by channels that were kept for classification, see 4b. A feature
To reduce the dimensionality of the EEG data for classifier vector of a single trial therefore consisted of one slope value
training, we first established an ordered list of channels based per selected EEG channel, resulting in a one-dimensional
on their discriminability, following an approach outlined array of shape (n_channels, ). The number of channels (and

by [12]. For each participant, all EEG channels were thus the dimensionality of the feature vector) varied across
evaluated for their discriminability between pre-movement participants.

and idle states. For all channels and both pre-movement Using scikit-learn [59], the optimal number of channels to
and idle epochs, the mean signal in the last 100 ms of select from the ordered list was determined through a 5-fold
each epoch was subtracted from the mean signal in the first cross-validated grid search, ranging from 6 to 20 channels in
100 ms of the epoch. The resulting value quantified temporal steps of 2. The number of top-ranked channels yielding the
change across the 1 s window. In line with the literature, highest classification accuracy was then used to train the final
there should be a clear signal difference in the pre-movement model for real-time application. We purposefully constrained

epochs but not in the idle epochs. Then, all channels were the dimensionality of the feature vector to avoid over-fitting
sorted (1) in descending order by the signal difference in and decrease the computational load. Finally, to determine the
the pre-movement epochs and (2) in ascending order by the classifier threshold for triggering EMS during real-time use,
signal difference in the idle epochs. Channels showing large we computed the Receiver Operating Characteristic (ROC)

differences in pre-movement but minimal change in idle were curve and selected a cutoff corresponding to a 15% false
thus prioritized. The ranks from both criteria were summed, positive rate.

yielding a final discriminability score, and channels were

ordered accordingly. 4) REAL-TIME APPLICATION AND EMS CONTROL

In line with the literature on the RP, channels C3, C4, During real-time application, the EEG data was buffered for
and Cz were moved to the top of the ordered list for the last second for the selected discriminative channels. The
every participant, as these are most frequently reported in data was band-pass filtered analogously to the training data

studies on the RP due to their central scalp location over from 0.1 to 15 Hz and the slope feature was computed.
motor areas which means higher sensitivity to neural activity This procedure ran at an update rate of 10 Hz, hence every
from RP-generating regions such as the supplementary and 100 ms a new prediction was obtained from the classifier.
primary motor cortices. This list of channels ordered by To smooth the prediction output to reduce false predictions
RP discriminability then served as the basis for selecting due to unlikely peaks, the predicted probability for the pre-
the optimal number of top-ranked channels during classifier movement class was smoothed by averaging the current and
training, see section I1I-D3 below. the preceding prediction with a weighting (weight of .3 for

the preceding, and .5 for the current prediction). The weights
3) TRAINING OF EEG CLASSIFIER were obtained through trial-and-error during piloting. Then,
To classify EEG data, a linear discriminant analysis (LDA) with a 10 Hz update rate, this smoothed probability, as well as
with shrinkage regularization (automatic shrinkage using the the predicted class for the current frame were gating the EMS
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switch: when the probability exceeded the threshold and the
currently predicted class was pre-movement, the switch was
opened for 0.5 s, see figure 4c.

5) POST-HOC EVALUATION OF REAL-TIME PERFORMANCE
To not break the user’s focus on the task at hand, (subjective)
labels were not obtained during the real-time application
in AUGMENTED. In other words, participants were not
directly queried, e.g., via questionnaires, to judge whether the
stimulation in the current trial was in line with their intention
or not. Without these labels, a post-hoc analyses of the binary
classifiers performance was not possible, i.e., to ascertain for
example false positive stimulations. However, we explored an
alternate approach to estimate (subjective) labels that does not
break the user’s task immersion. We investigated prediction
errors in response to the movement onset through event-
related potentials (ERPs) at fronto-central electrode FCz.
Previously, prediction error ERPs at, among others, electrode
FCz have been shown to be one suitable candidate feature to
detected breaks in (task) immersion, such as when perceiving
glitches in VR [54], [60], [61], [62], [63]. In BCIs, these ERPs
are frequently leveraged to correct system errors [53]. In their
work, [53] demonstrated a BCI to decode a user’s intended
cursor movement direction on a 6 x 6 grid. The system
regularly probed the user by observing the EEG response
to random cursor movements. How severely the random dot
movement violated the user’s intention was directly reflected
in the ERP activity. We hypothesized to find similar ERP
signatures when the stimulation misaligned with the user’s
prediction.

Since this analyses was conducted post-hoc, it allowed
for more signal processing in comparison to the feature
extraction from INTENTION when participants were waiting
to start the next block. With the goal to best recover
the prediction error ERP, we again applied ‘BeMoBIL-
pipeline’ [50] wrapper functions of EEGLAB [49]: After
removing non-experiment segments at the beginning and
end of the concatenated recording from all three conditions,
EEG data was re-sampled to 250 Hz. Next, bad channels
were detected using the ‘FindNoisyChannel’ function, which
selects bad channels by amplitude, the signal-to-noise ratio,
and correlation with other channels [64]. Rejected channels
were then interpolated while ignoring the EOG channel,
and finally re-referenced to the average of all channels,
including the original reference channel FCz. After applying
a high-pass filter at 1.5 Hz [65], time-domain cleaning
and outlier removal were performed using AMICA’s built-
in sample rejection, which iteratively excludes data points
with poor model fit based on log-likelihood deviation. This
model-driven approach removes only those artifacts that
degrade the ICA decomposition while retaining decompos-
able signals [66], [67]. Eye artifacts were removed using the
ICLabel toolbox applied to the AMICA decomposition [68],
projecting out components with the highest probability for
the eye class according to ICLabel’s popularity classifier.
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These components were excluded from the decomposition,
and the remaining independent components were then back-
projected to the sensor level to reconstruct the cleaned EEG
signal without eye-related activity.

For all three conditions, ERPs were extracted from band-
pass filtered (0.1 Hz to 15 Hz, same filter design as above, see
section III-D1) activity at electrode FCz. These ERPs were
obtained from —1000 ms to 500 ms around the movement
onset. Trials were excluded in line with the removal for
classifier training, see section III-D1. For all muscle-
controlled trials without EMS, movement onset was defined
as the time of the tap on the touchscreen minus the ‘EMG-
delay’ defined in section III-D. For all EMS-controlled trials,
movement onset was defined as EMS onset. To keep only
EMS-controlled trials where the stimulation resulted in an
‘immediate’ screen tap, first all trials were rejected where
there was no screen tap in the 350 ms following EMS. Next,
‘extreme outlier removal’ was conducted on the delta between
EMS and the screen tap using Tukey’s method based on the
inter-quartile range [69]. In total, 32.9 (SD = 30.3) trials were
rejected on average per participant across all three conditions.

E. MEASURES OF AGENCY EXPERIENCE: INTENTIONAL
BINDING, QUESTION & INTERVIEW

Following standard protocols we quantified implicit SoA via
the ““interval-reproduction” task, see section III-C above for
the task setup. Each trial ended with a tone occurring 200,
350, or 500 ms after the touchscreen tap. Participants were
instructed to estimate that delay in milliseconds and enter the
value on a keypad. Because intentional binding manifests as
a temporal compression, we defined the binding score as the
signed error,

Binding = Estimate — Real Delay ,

where negative values indicate tempporal compression
(stronger SoA).

After each condition participants were prompted to rate
their experienced agency on a 7-point Likert scale with the
statement “‘It felt like I was in control of the movements
during the task.”, the item was copied from [70].

Following AUGMENTED we interviewed users about
their experience working with the system. After prompting
users to recall their experience and summarize what their
task had been, we set the focus to the tapping movement
and asked them to ignore the time estimation task in the
questions that followed. We entered the open part of the
interview by asking: “What did the system do?”” followed up
by “What was the difference between the three conditions?”.
After some time, and depending on their answers, we reset the
focus to the AUGMENTED condition and asked ‘“How often
was the system active?”’ followed by ‘“What do you think
caused the actions of the system?”’. This was then followed
up by an ‘open’ interview in which we frequently asked ‘how’
and ‘why’ questions to inquire about the user’s experience.

We analyzed the interviews by loosely following [71].
All interviews were manually transcribed and translated
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to English using DeepL?® (DeepL SE, Cologne, Germany).
Before screening the texts, two experts clustered the
responses into 3 clusters: First, “Functionality” referred to
what participants attributed the source of the stimulation.
Next, we clustered responses according to “Guessed per-
centage” of correct interaction, i.e., participants’ estimate
of how well the system was aligned with their intention.
For the cluster “Correct Interaction”, we specifically queried
participants to recall the moments where the stimulation felt
in line with their intention to move, then we clustered their
responses into sentiments with positive and negative valence.

F. STATISTICAL ANALYSES

To confirm and demonstrate the discriminative power of the
EEG features, we plotted the amplitude time course of elec-
trode Cz between pre-move and idle epochs. Electrode Cz was
chosen for exemplary presentation, as it is frequently reported
in studies on the RP, since it sits above the sensorimotor
cortex. Next, the slope coefficients were extracted and a
paired t-test was conducted.

To evaluate the classifier’s performance, we calculated
precision, recall, and F1 score, i.e., the harmonic mean
of precision and recall. Furthermore, we calculated the
average confusion matrix across participants. The mean
confusion matrix was computed by averaging individual
confusion matrices from each participant’s cross-validation
folds. Lastly, the receiver operating characteristic (ROC)
curve was computed and plotted to visualize the trade-off
between sensitivity and specificity, see Figure 7a to c.

1) HYPOTHESES TESTING

Prior to any statistical analyses of the intentional binding
measure, outlier trials were rejected. We applied ‘extreme
outlier removal’ using Tukey’s method [69] on three time
intervals that well describe ‘regular’ behavior across trials:
(1) Tapping the screen in a reasonable interval after the
fixation cross disappeared. An excessively short or long
delay indicated that participants either tapped the screen
prematurely by accident or they were checking in with
the experimenter, respectively. (2) Providing a ‘reasonable’
estimation in the intentional binding task. (3) The EMS
stimulation leading to an immediate screen tap. A long
delay between the EMS trigger and the subsequent screen
tap indicated that the stimulation was not strong enough in
this trial to lead to muscle actuation resulting in a screen
tap. Taken together, applying Tukey’s method to each of
these time windows and fusing the rejected trials led to the
exclusion of 110 trials across all participants (M = 12.2, SD =
9.1), resulting in a final data set of 2140 trials.

In line with the literature on intentional binding,
we hypothesized that the time intervals should be underes-
timated for the INTENTION and the AUGMENTED condi-
tions. This should not be the case for the INVOLUNTARY
condition where users had no intention to move. Hence,

3 https://www.deepl.com/translator
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when binding occurs, the intervals should be underestimated,
hinting at a higher SoA.

To test this, we fitted a linear mixed-effects model with
condition (INTENTION, INVOLUNTARY, AUGMENTED)
as a fixed effect and ‘participantID’ as a random effect. For
this analysis, single-trial data were averaged within each
participant for each condition. The model was specified as
‘time interval ~ condition 4+ (llparticipantID)’ and fit using
the ‘lme4’ package [72]. A test statistic was obtained by
calculating likelihood-ratio tests comparing the full model as
specified above against the null model ‘time interval ~ 1 +
(1lparticipantID)’. All parameters were estimated by maxi-
mum likelihood estimation [73]. We computed post-hoc pair-
wise tests for ‘condition’ corrected for multiple comparisons
(Tukey method) using the emmeans package [74]

Next, we hypothesized that subjective ratings of control
over the tap movement are comparable between INTENTION
and AUGMENTED and lower in the INVOLUNTARY
condition. Again, we fitted a linear mixed effects model with
condition as a fixed effect and participant ID as a random
effect. Coefficients were assessed in the same way as for the
intentional binding parameter above.

In short, we tested two main hypotheses with regard to
the agency experience in our three experimental conditions:
(1) participants underestimate the tone delay when acting
intentionally. Adding EMS in line with participants’ intention
to move does not affect this underestimation. (2) The subjec-
tive feeling of control is comparable between INTENTION
and AUGMENTED conditions. INVOLUNTARY should
decrease the feeling of control significantly. Additionally,
we report the clustered interviews anecdotally.

To analyze prediction error ERPs following the movement
onset, potentially reflecting a disruptive experience impacting
SoA, a linear mixed effects model was fit at each time
point of the ERP using the ‘lme4’ package [72]. The
model ‘ERP_sample ~ condition + (llparticipantID)’ was
fit with condition reflecting trials belonging to INTENTION,
INVOLUNTARY, or AUGMENTED. Prior to model fitting,
all trials were averaged within each participant for each
condition. A test statistic was obtained by calculating
likelihood-ratio tests comparing the full model as specified
above against the null model ‘ERP_sample ~ 1 + (1lpar-
ticipantID)’. All parameters were estimated by maximum
likelihood estimation [73]. P-values were corrected for
multiple comparisons using false discovery rate [75] at
o = .05.

Since the AUGMENTED condition contains both, ‘EMS-
controlled’ trials, where the classifier detected an intent
to interact, as well as ‘muscle-controlled’ trials, where the
classifier failed to detect the user’s intent and the user
carried out the tap without EMS, we split these two trial
categories. We hypothesized that ‘EMS-controlled’ trials
in AUGMENTED differ from trials in INVOLUNTARY.
The latter should elicit a stronger prediction error than
the former since no impact of volition is present in
INVOLUNTARY, which could potentially moderate the ERP.
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Similarly, we hypothesized that ‘muscle-controlled’ trials
in AUGMENTED should not differ from INTENTION
trials. To test these hypotheses, permutation t-tests were
performed on data averaged per participant and condition
using MNE-python [76] contrasting ‘EMS-controlled’ trials
in AUGMENTED with INVOLUNTARY as well as ‘muscle-
controlled’ trials in AUGMENTED with INTENTION. The
tests were conducted for the time window from 150-250 ms
post movement— or EMS-onset event. In short, these tests
were conducted to investigate the moderating role of the user
acting at their own volition in AUGMENTED.

IV. RESULTS

In the intentional binding task, i.e., the estimation of the
time interval between tap and tone, participants generally
underestimated the average real delay (350ms) in all three
conditions (INTENTION M = —160.7 ms, SD = 88.1;
INVOLUNTARY M = —135.3, SD = 110.3, AUGMENTED
M = —162.4, SD = 113.8). The underestimation was not
affected by the condition, see 5.
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FIGURE 5. Left: Difference in time estimation from real delay in
intentional binding task for the three experimental conditions. Negative
values indicate a temporal compression, i.e., temporal binding. Right:
Trials in the AUGMENTED condition split in EMS- and self-executed trials.

A. SUBJECTIVE RATINGS & REPORTS

The subjective rating of control differed between conditions
(xé) = 43.7,p < .001), see figure 6b. Post-hoc tests
revealed that participants rated their level of control higher
in INTENTION compared to INVOLUNTARY (beta =
48,p < .0001), and higher in INTENTION compared
to AUGMENTED (beta = 3.1,p < .0001). Further,
higher control was observed in AUGMENTED compared to
INVOLUNTARY (beta = —2.9, p = .006).

1) FUNCTIONALITY

Eight out of the ten participants made a reference to
the source of the EMS in the AUGMENTED -condition.
In that subgroup, most participants wondered how the system
worked, one remarked, “I can’t explain how it works
technically.”. Another one mentioned that “maybe the time
estimation task had something to do with it.”. They found
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FIGURE 6. Subjective ratings of control across conditions. Significance
labels obtained from post-hoc tests on estimated marginal means.

the stimulation to be sporadic, even during their own actions,
leading to a belief that it was coincidental. As one participant
put it, “I have no idea what controlled the stimulation,
I think it was coincidence when stimulation occurred.”.
Furthermore, participants reported that they found the timing
of the stimulation to be unpredictable, with one participant
noting, “Stimulation was random in time.”.

Some perceived the stimulation as externally triggered,
yet partially responsive to their choices, resulting in a
sentiment captured by, ““I think that the stimulation in the
third block was partly random, but partly as if it was
following my decision/choice.”. One participant noted that
they felt that “somehow the information is in my arm™.
Another one briefly considered the involvement of their brain
waves in controlling the stimulation, but expressed doubts
about this possibility, stating, “But I don’t think that is
the case.”.

2) GUESSED PERCENTAGE

Some participants reported that the stimulation ‘“‘sometimes
overlapped with the movement, but not often,” or, it “‘came
only rarely.”” Another one noted, “In a few cases, the
stimulation came when I had already started the movement.”
For several participants, this overlap between their actions
and the system’s response occurred infrequently, with another
user noting, ‘“Once, in the millisecond range between
my planned movement and its execution.” However, for
some participants, there were moments of near-perfect
synchronization, as described by one participant, “In 3 cases
it happened that my intention to press and the impulse
of the device happened simultaneously.” or “in 3—4 cases
it happened simultaneously that I wanted to tap and the
stimulation happened”. Another one noted, ‘“Sometimes it
really happened that they overlapped. So that I just started to
move, and then the device activated.”. That user estimated an
overlap of “40 %” while two other users said [we worked
together in] “15 % of trials.” These accounts collectively
highlight the varied and occasionally synchronous nature of
the system’s timing in relation to the users’ intentions.
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3) CORRECT INTERACTION

In terms of valence sentiments for the cases where the
stimulation aligned with participants’ intentions, some par-
ticipants indicated that the experience was positive. For
example, participants described the experience as ‘‘rather
funny”, “weird but funny”’, “pleasant” or “helped me with
the execution” and “‘it was more of a collective movement.”
One participant remarked “‘then it was ok to experience the
stimulation, but also not more than ok’ while another one
noted “It had a bit of thinking ahead to it”. Some noted
that they experienced an increase in their physical strength,
remarking, “supported my strength”, “made me type more
firmly”” and “my typing performance was increased.” On the
other hand, some participants had negative sentiments during
these moments of aligned stimulation, remarking, ““felt like I
was still in competition with the system™, ““it did not feel like
an acting together”” and ““on a psychological level it was a loss
of control.” Another one noted, that they “felt determined-
by-others and then tried to resist the impulse. I felt excluded
from the decision to tap™.

B. CLASSIFIER PERFORMANCE

Visual inspection of the amplitudes at electrode Cz revealed
an increase in the difference between pre-movement and idle
data segments towards the onset of the finger movement, see
figure 7a. The slope feature for the exemplary channel Cz
discriminates well between the two classes (#(10) = 4.4,p <
.001), see figure 7b bottom. The scalp maps in figure 7b
top show the (color-coded) mean slope for each channel
and each class. Central channels on the contralateral side to
the moving finger on the right hand show a negative slope
for the pre-movement class and a neutral slope for the idle
class. Furthermore, differences in slope were also observed at
frontal electrodes over the left hemisphere as well as parietal
electrodes, where a positive slope manifested only for the
idle class. The classifier yielded a mean F1 score of 0.70,
a mean precision of 0.70, and a mean recall of 0.70 across
participants, see the ROC and mean confusion matrix in 7¢
and d.

The grid-search over channels resulted in the BCI
leveraging on average 11.2 (SD = 3.6) channels. Besides
channels C3, C4, and Cz, that were always included, other
common channels included FT9 and AF3 (retained in at least
3 participants). Channels F7, F2, F4, F5, AF4, AF7, TPS,
and O1 were retained in at least 2 participants. The classifier
cross-validation resulted in a mean F1 score of .71 (SD =
.03), see figure 7c. We set the detection threshold to 15% false
positive rate and at that rate, observed a mean threshold of
57% (SD = .04). Hence, on average, the classifier switched
on the EMS when it predicted class pre-movement with 57%
probability.

1) POST-HOC ANALYSES OF CLASSIFIER PERFORMANCE
In line with the readiness potential a negative going deflection
over the last second preceding the movement onset was
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present in both INTENTION and AUGMENTED, but not in
INVOLUNTARY, see figure 8a. Furthermore, ERPs differed
between the three conditions in the time window from 210 ms
— 250 ms following movement onset ()((22 =10.6,p = .03 at
220 ms). INVOLUNTARY exhibited a strong negativity peak
(strongest among the three conditions), peaking at around
—10 nV at 210 ms after movement onset. A weaker peak was
observed for AUGMENTED (—6 pV at 210 ms) and even
more so for INTENTION (-2 uV at 150 ms).

When correcting for the influence of the EMS by
subtracting INVOLUNTARY from EMS trials in AUG-
MENTED and INTENTION from ‘muscle-controlled’ trials
in AUGMENTED we observed no differences. Visually,
it appears that trials in both INVOLUNTARY and INTEN-
TION condition exhibit a stronger negativity in the post
movement time window of interest than respective EMS
and ‘muscle-controlled’ trials in AUGMENTED, see the
positive deflections peaking at 300 ms post movement onset
in figure 8b.

V. DISCUSSION

In this paper, we investigated if SoA can be maintained
in action augmentation when the augmentation aligns with
the users intention. We evaluated a BCI that controls EMS
at moments of users’ intention to interact. By leveraging
an average of 11 EEG channels and using a simple, fast-
to-compute feature, the BCI achieved a mean F1 score of
about .7.

In the user study with 10 participants we found no evidence
for a disruption in intentional binding, hinting at a maintained
SoA. In line with the literature, participants underestimated
the delay between tap and tone in both conditions where they
were instructed to act on their own volition [26]. However,
we also found that participants similarly underestimated the
delay in INVOLUNTARY. This conflicting finding is in line
with recent literature that has questioned the validity of the
intentional binding phenomenon as a correlate of agency,
stating that the effect may “merely represent a strong case of
multisensory causal binding” [30], [31], [77]. This might be
especially true for cases where one’s own body is completing
the action while being externally controlled. Interestingly,
in our scenario, proprioceptive signals and other indicators
of embodied actions remain in line with the user acting at
their own volition. Hence, the underestimations we found
might purely follow from multisensory causal binding. The
temporal compression effect might therefore not be based
on inferring subjective causality following from intention but
solely from causally binding sensory information.

We do note that the underestimation appeared to be trend-
ing smaller in INVOLUNTARY as in both, INTENTION
and AUGMENTED. However, the effect might be smaller
than what could be proven given our sample size. Within the
AUGMENTED condition trials, we observed no difference
between ‘EMS-controlled’” —and ‘muscle-controlled’ trials,
indicating an alignment with the augmentation technology
in the AUGMENTED’s ‘EMS-controlled’ trials as the
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Bottom (b): Difference ERPs at FCz of the ‘muscle-controlled’ trials in

AUGMENTED minus INTENTION as well as EMS trials in AUGMENTED
minus INVOLUNTARY.

stimulation did not appear to disrupt participants’ perfor-
mance in the temporal delay estimation task.

On the level of subjective experience, we found that partic-
ipants rated their level of control lower when using the system
(AUGMENTED) compared to voluntary interaction without
EMS (INTENTION). This aligns with prior work showing
that EMS-based actuation often leads to reduced feelings of
control [78]. Given this known effect, INTENTION may have
been a difficult baseline for AUGMENTED to match in terms
of subjective agency ratings.

In addition, one possible factor contributing to the
moderate agency scores in the AUGMENTED condition
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could be differences in cognitive load. While the tasks
and instructions were held constant between INTENTION
and AUGMENTED, some participants described the EMS
stimulation as occasionally disruptive or distracting dur-
ing post-experiment interviews. This may have selectively
increased cognitive effort in the AUGMENTED condition,
subtly diminishing SoA. We consider expectation biases
unlikely, as participants were generally unaware that the
stimulation in AUGMENTED was driven by their brain
activity. Likewise, novelty effects are unlikely to have varied
across conditions, as EMS parameters remained identical
throughout the experiment. Nevertheless, future studies could
benefit from explicitly measuring cognitive load to better
understand its influence on agency.

Building on this, one way to better isolate agency
attributions in future work would be to include a control
condition that more closely mirrors the physical experience
of AUGMENTED. For example, using a stimulus-response
EMS condition or a sham trigger could help separate
the effects of neural intent alignment from the effects of
EMS itself. Comparing such a heuristic-triggered condition
with BCI-controlled EMS would clarify how much of the
agency experience can be attributed specifically to volitional
alignment, rather than to the mere presence of stimulation.

Using such a stimulus-response condition with heuristi-
cally triggered EMS (e.g., at a fixed delay after a go cue) for
a baseline condition [38], [39], [40], would primarily allow
to explain the costs of sub-optimal BCI classification. While
heuristic algorithms operate at 100% reliability, our classifier
achieved an average F1 score of .70. It would therefore
be expected that agency in the stimulus-response condition
would be higher, simply due to no mismatching stimulations.
Such a comparison could shed light on whether false positives
(stimulation without intent) or false negatives (missed intent)
have a greater long-term impact on perceived control and
agency.

Furthermore, a stimulus-response baseline would allow
to estimate the effective pre-emptive gain achieved by the
closed-loop system. By applying the classifier to trials with
a go-cue, one could extract the time when the classifier picks
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up the RP following the go cue. After accounting for known
technical processing and actuation latencies, the pre-emptive
gain can be extracted by comparing when the stimulation
would occur with the closed-loop system vs. the heuristic.
However, in terms of the RP as measured via the EEG,
there are known differences in stimulus-locked RPs, and RPs
pre-ceding volitional action [79], limiting the utility of the
comparison with go cue trials. In general, this would not be
reliably assessed on single trials due to classifier uncertainty,
and an averaging across trials would be necessary to yield a
useful approximation.

Crucially, the key contribution of our prototype is
that it implements a closed-loop augmentation system—
independently monitoring neural activity and actuating
the user’s body. In contrast, traditional stimulus-response
paradigms represent open-loop control: stimulation is deliv-
ered based on external events. Open-loop systems can
only be deployed in highly controllable environments. The
application feasibility of closed-loop systems like ours, where
no knowledge about the environment is required, is thus a
significant step towards deploying augmentation devices in
the real-world.

From participants’ qualitative reports we learned that when
the stimulation aligned with participants’ intentions, positive
sentiments outweighed negative ones. When it did not,
participants reported a negatively perceived loss of control.
To situate participants comments, a differentiated look at the
classification system’s performance is warranted.

First, we note that our system was built using off-the-
shelf, affordable, equipment to physically augment users’
actions. Taken together, all technical devices to control the
users’ movements, i.e., the EMS stimulation device, Arduino,
and switchboard, cost less than 100 Euros. While we used
a 64-channel research-grade EEG system, the channel
selection procedure resulted in the system ultimately using a
low-density channel coverage for classification. Today, many
low-density EEG devices are available on consumer markets
at affordable price points, see [80] for a recent summary of
available wireless systems. Still, the system achieved what is
considered to be a ‘good’ F1 score of .7, and hence sometimes
detected users’ intention to interact.

While an F1 score of .7 may be considered ‘good’ for
many classification scenarios, when aiming to elicit a feeling
of control this level of performance may likely not be good
enough, see [81] for a review. Balancing false positive rate
(FPR) and true positive rate (TPR) appropriately may prove
crucial to elicit an experience of agency.

A. ERPs FOR DATA LABELING

False negative classifications meant that the system did not
trigger an EMS pulse in line with participants’ intent to tap
on the screen. On the other hand, false positive classification
meant that an EMS pulse was sent in the absence of a true
intention by the participant. Both cases, individually and
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jointly, had the potential to impact the user experience and
erode trust in the system.

We investigated EEG activity at electrode FCz to ascertain
presence or absence of a prediction error in response to
the stimulation or movement onset, see figure 8. Ultimately,
classifying the EEG here could be leveraged to approx-
imate labels for classifier validation. The idea is that in
AUGMENTED a false positive would mean that the EMS
is falsely triggered and hence the movement onset would
catch the participant by surprise. On the other hand a false
negative means that a user starts their movement on their
own without EMS, potentially equally ‘surprising’ them,
or in other words not aligning with their prediction. In line
with this theory, we found a negativity affected by the trial
condition in the 150-250 ms time window after movement
onset, see figure 8a. A strong negativity was present in
INVOLUNTARY, where the user experienced the stimulation
at unpredictable times. A less pronounced negativity was
present in AUGMENTED, with only a marginal peak present
in INTENTION.

To carve out the differences between the two trial cate-
gories ‘EMS-controlled’, and ‘muscle-controlled’ in AUG-
MENTED from the two anchoring conditions, we subtracted
each category from INVOLUNTARY and INTENTION
accordingly, see figure 8b for an explorative view on the ERP
data.

First, we note that all ‘muscle-controlled’ trials from
AUGMENTED were false negatives, as the classifier failed
to pick up on the readiness potential preceding the movement.
By subtracting AUGMENTED, we observed that the pre-
movement activity at electrode FCz did not differ from
INTENTION. This shows that both these trial groupings
exhibited a similar readiness potential at electrode FCz
and the classifier failed to pick up on on it. Following
the movement start, a trend emerged after 150-250 ms,
in which ‘muscle-controlled’ trials from AUGMENTED
trends towards a stronger negativity than INTENTION trials,
hence a positive difference, see figure 8b blue line. This may
indicate that participants always expected an EMS pulse in
AUGMENTED and carrying out the movement without EMS
support violated their prediction.

In the ‘EMS-controlled’ trials in AUGMENTED, both
false positive and true positive classifications overlap. In the
contrast with INVOLUNTARY, the readiness potential which
lead towards a positive classification outcome was visible
in the second preceding the movement, see the negative
going deflection in figure 8b orange line. In the 150-250 ms
time window after movement onset, a similar trend as
described above was visible. The slight positive bump
was due to a stronger negativity in ‘EMS-controlled’ trials
in AUGMENTED as compared to INVOLUNTARY. One
possible explanation is that the trend is driven by false
positive classifications, where a slight misalignment of the
stimulation, i.e. it being too early, severely disrupts the user,
eliciting a string prediction error signal. Taken together,
we believe that contrasting and classifying single-trials
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could be a fruitful endeavor for approximating classification
labels.

B. LIMITATIONS & FUTURE DIRECTIONS

Two main procedural issues arose concerning the time
estimation task: First, contrasting AUGMENTED with
INTENTION, we noted that when EMS moved participants’
fingers, they sometimes reported that their finger was
pressing on the touchscreen for a longer duration as compared
to their ‘normal’ touchscreen tap. This may have introduced
additional variance in the time estimation task since the exact
moment of the tap that causes the tone is more obscure.
Second, following pilot recordings, we chose to obtain
participants’ time estimates by asking them to type in their
estimates on the keyboard. However, we observed that many
participants, while perceiving a continuous distribution of the
delays, did not answer at a continuous ms resolution but rather
at steps of 50 or 100 ms, skewing the distribution of their
answers. While many different versions of the intentional
binding paradigm exist [26], we would choose a continuous
slider for future experiments with different initial positions
over trials to reduce the bias in participants’ estimates.

1) SYSTEM PERFORMANCE

In the interviews, participants reported only a relatively
low number of correctly detected intentions. This may have
ultimately led to a misalignment between users’ perceptions
and the observed, measurable, system behavior. Furthermore,
the necessity for a fixed block/condition order may have
further contributed to this effect. However, keeping the order
was necessary in order to first obtain training data for the BCI
based on the unique EEG signals of each participant.

As a consequence, the insights gained into the system’s
potential to preserve a sense of agency are limited. The
quantitative metrics employed in our study, specifically
those measuring the sense of control (including temporal
binding and item assessment), may not have captured the
nuanced temporal alignment experiences associated with
EMS augmentation and user movement intentions but rather
a more holistic assessment of the entire experimental block,
which included trials with missed stimulations, too early
stimulations, and some trials where the stimulation was in
alignment with the participants’ intent.

Our system ran at a 10 Hz update rate, chosen to prevent
buffer overflow given that the computational latency from
EEG measurement to classifier output was approximately
40 ms. Including an additional delay of about 50-80 ms for
EMS triggering and electromechanical response [38], [82],
our total end-to-end latency was approximately 100-120 ms.
Given that the readiness potential (RP) typically precedes
voluntary muscle activation by 200—400 ms [10], [45], our
system provided a theoretical temporal window sufficient for
pre-emptive actuation. Thus, our system latency should allow
EMS-induced movements to precede or align closely with
volitional muscle activation, preserving agency.
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However, it remains challenging to empirically confirm
the actual pre-emptive gain in our system, since participants
acted voluntarily and no direct, objective label for the
“true”” onset of movement intention was available. This
challenge distinguishes our closed-loop scenario from related
stimulus—response studies, where intention can be inferred
directly from the timing of an external cue. Nevertheless,
latency is critical for maintaining the sense of agency (SoA),
as temporal misalignment can create perceptual mismatches.
Future optimizations such as shorter EEG analysis windows,
higher update rates, low-latency filtering, or faster EMS
hardware could help consistently reduce latency below
100 ms, further enhancing both agency and real-world
feasibility of EEG-driven augmentation systems.

While we believe that our prototype did not perform
at a consistently high enough performance to allow for
more fine-grained inferences about the the pre-emptive gain
it achieved, we maintain that in some cases it elicited a
pre-emption that maintained agency to a certain degree.
We believe this to be a very promising finding because
our prototype with low technological requirements still
produces behavioral results indicating that intention can be
detected and planned movements be augmented. However,
from stimulus-response paradigms we recall that increasing
participants’ reaction times by about 80 ms is optimal with
regards to maintaining SoA [38]. On one hand, our system is
capable of delivering pre-emption within this ‘SoA-optimal’
time range. On the other hand, however, the sub-optimal
performance of the classifier resulted in a lot of variation
due to false positive detections. While in some cases, as we
observed in the users’ comments, the stimulation may have
pre-empted a user’s motion, false positive stimulation may
have had a significant impact on the overall impression of the
system.

Taken together, the key objective remains in improving the
overall performance of the classification system. One promis-
ing direction is to fuse complementary models based on
distinct physiological signals. For example, in virtual reality
(VR), gaze dynamics—particularly gaze velocity—have been
shown to reflect users’ intent to interact [83], while EMG
has demonstrated high reliability for detecting movement
onset [56]. A hybrid augmentation system combining such
features could significantly enhance classification accuracy
and robustness.

Beyond signal fusion, future systems may benefit from
integrating Al-driven techniques such as predictive modeling
or reinforcement learning (RL). Predictive models trained
on multimodal data (e.g., EEG, EMG, gaze, behavioral
context) could anticipate user intent more effectively, even
in noisy or ambiguous situations. Reinforcement learning,
in particular, may allow systems to adapt stimulation policies
over time based on user feedback or performance outcomes,
thereby optimizing alignment with individual users’ voli-
tional patterns; see, for example, [84] for a neuroadaptive
system that leverages EEG-based neural signals as implicit
labels for RL. Such approaches may offer more flexible,
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personalized, and context-aware augmentation—especially
critical for deployment in real-world environments.

VI. CONCLUSION

In this paper, we designed and investigated a system to
maintain users’ SoA during augmented experiences using
brain signals reflecting the intent to (inter-) act. In our user
study, we found no convincing evidence that intentional
binding effects are stronger when participants work with an
augmentation system compared to being passively moved.
However, participants rated their level of control working
with the system higher than when being passively moved.

We believe this constitutes an important step toward
realizing augmented users who experience full integration
with the supporting technology [3]. Our closed-loop system
represents progress toward predictive interfaces that directly
engage the user’s body while still feeling natural by aligning
with their volitional intent. Beyond medical and rehabilitative
domains, such closed-loop systems may prove valuable in
a range of real-world applications: In skill training and
sports, such systems could assist athletes by reinforcing
precise motor patterns during practice, potentially accelerat-
ing motor learning through intention-aligned feedback [85].
In immersive XR environments, EMS could provide pre-
emptive physical feedback to enhance the realism and
responsiveness of embodied interactions. Industrial use cases
include human-robot collaboration, where EMS could help
stabilize or coordinate fine motor actions in high-precision
tasks. Finally, in high-stakes operational settings like drone
piloting or defense applications, intention-based EMS could
support rapid, safety-critical actions while preserving human
control. As a further step forwards, we envision such systems
enabling real-time modulation of an interaction’s affordance
structure [55], [86], [87].

We want to emphasize the importance of ethical review and
user-centered design in future research on intention-based
augmentation. When manipulating motor behavior techno-
logically, it is essential to consider the broader consequences.
Our system aims to reduce the delay between intention and
movement, but even partial success in intention detection may
reshape how users relate to their own bodily actions. For
instance, while shortening this delay could enable exceptional
motor performance, deploying such systems in high-stakes
contexts—like weapons control-raises significant ethical con-
cerns. Long-term usability further depends on maintaining
user trust and transparency, particularly in systems that act on
inferred mental states. Classification errors may reduce trust
or lead to over-reliance, underscoring the need for transparent
communication about system behavior. Future work must
balance technical performance with interpretability and user
understanding.

As Al technologies increasingly permeate our daily lives,
questions about how agency is shared between humans and
machines continue to gain importance. If such systems are to
move directly onto and into our bodies, alignment with users’
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intentions will be the key factor determining their acceptance
and success.
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